Monday 20 March 2017

Ma Moving Average Modell

Moving Average - MA. BREAKING DOWN Moving Average - MA. As ein SMA Beispiel, betrachten Sie eine Sicherheit mit den folgenden Schlusskurse über 15 Tage. Week 1 5 Tage 20, 22, 24, 25, 23.Week 2 5 Tage 26, 28 , 26, 29, 27.Week 3 5 Tage 28, 30, 27, 29, 28.A 10-Tage-MA würde die Schlusspreise für die ersten 10 Tage als ersten Datenpunkt ausgleichen Der nächste Datenpunkt würde am frühesten fallen Preis, fügen Sie den Preis am Tag 11 und nehmen Sie den Durchschnitt, und so weiter wie unten gezeigt. Wie bereits erwähnt, MAs nach der aktuellen Preis-Aktion, weil sie auf vergangene Preise basieren, je länger die Zeit für die MA, desto größer die lag So Ein 200-Tage-MA wird eine viel größere Verzögerung als ein 20-Tage-MA haben, weil es Preise für die letzten 200 Tage enthält. Die Länge der MA zu verwenden, hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel verwendet werden Und längerfristige MAs mehr geeignet für langfristige Investoren Die 200-Tage-MA ist weit gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Handelssignale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, Oder wenn zwei Durchschnitte kreuzen Ein aufsteigender MA zeigt an, dass die Sicherheit in einem Aufwärtstrend ist, während ein abnehmender MA anzeigt, dass es sich in einem Abwärtstrend befindet. Ähnlich wird der Aufwärtsimpuls mit einem bullish Crossover bestätigt, der auftritt, wenn ein kurzfristiges MA über einen längeren übergeht - term MA Abwärts-Impuls wird mit einem bärigen Crossover bestätigt, der auftritt, wenn ein kurzfristiger MA unterhalb eines längerfristigen MA.2 1 Moving Average Models MA Modelle. Time-Serienmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und oder verschieben Durchschnittliche Ausdrücke In der Woche 1 haben wir einen autoregressiven Begriff in einem Zeitreihenmodell für die Variable xt gelernt, ist ein verzögerter Wert von xt. Zum Beispiel ist ein autoregressiver Term 1 x t-1 multipliziert mit einem Koeffizienten. Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler, multipliziert mit einem Koeffizienten. Let wt Overset N 0, Sigma 2w, was bedeutet, dass die wt identisch, unabhängig verteilt sind, jeweils mit einer Normalverteilung mit Mittelwert 0 und derselben Varianz. Das 1. Auftragsmodell, das mit MA 1 bezeichnet wird, ist. Xt mu wt theta1w. Das 2. geordnete gleitende Durchschnittsmodell, das mit MA 2 bezeichnet wird, ist. Xt mu wt theta1w theta2w. Das gängige gleitende durchschnittliche Modell, das mit MA q bezeichnet wird, ist. Xt mu wt theta1w theta2w punkte thetaq. Note Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und nicht quittierten Begriffe in Formeln für ACFs und Abweichungen Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Zeichen verwendet wurden, um das geschätzte Modell R korrekt zu schreiben. R verwendet positive Zeichen in seinem zugrunde liegenden Modell, wie wir hier sind. Die theoretischen Eigenschaften einer Zeitreihe mit Ein MA 1 Modell. Hinweis, dass der einzige Wert ungleich Null in der theoretischen ACF ist für lag 1 Alle anderen Autokorrelationen sind 0 Also ein Beispiel ACF mit einer signifikanten Autokorrelation nur bei lag 1 ist ein Indikator für eine mögliche MA 1 Modell. Für interessierte Studenten, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handzettel. Beispiel 1 Angenommen, dass ein MA 1 - Modell xt 10 wt 7 w t-1 ist, wobei wt Overset N 0,1 Somit ist der Koeffizient 1 0 7 Die theoretische ACF ist gegeben durch Von diesem ACF folgt. Die Plot, die gerade gezeigt wird, ist die theoretische ACF für eine MA 1 mit 1 0 7 In der Praxis, ein Beispiel gewonnen t in der Regel ein solches klares Muster Mit R, simulierten wir n 100 Probenwerte mit dem Modell xt 10 wt 7 W t-1 wo w t. iid N 0,1 Für diese Simulation folgt ein Zeitreihenplot der Stichprobendaten Wir können aus dieser Handlung viel erzählen. Die Stichprobe ACF für die simulierten Daten folgt Wir sehen eine Spike bei Verzögerung 1 Gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Beachten Sie, dass die Stichprobe ACF nicht mit dem theoretischen Muster der zugrunde liegenden MA 1 übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sind. Eine andere Probe hätte eine etwas andere Probe ACF Unten gezeigt, aber wahrscheinlich die gleichen breiten Features haben. Theroretische Eigenschaften einer Zeitreihe mit einem MA 2 Modell. Für das MA 2 Modell sind die theoretischen Eigenschaften die folgenden. Hinweis, dass die einzigen Werte ungleich Null in der theoretischen ACF sind für Lags 1 Und 2 Autokorrelationen für höhere Verzögerungen sind 0 Also, ein Beispiel ACF mit signifikanten Autokorrelationen bei Verzögerungen 1 und 2, aber nicht signifikante Autokorrelationen für höhere Verzögerungen zeigt ein mögliches MA 2 - Modell an. N 0,1 Die Koeffizienten sind 1 0 5 und 2 0 3 Da es sich hierbei um einen MA 2 handelt, wird der theoretische ACF nur ungleich Null-Werte nur bei den Verzögerungen 1 und 2 haben. Die Werte der beiden Nicht-Null-Autokorrelationen sind. Ein Diagramm der theoretischen ACF folgt. Wenn fast immer der Fall ist, wurden die Beispieldaten gewonnen Verhalten sich ganz so perfekt wie die Theorie Wir simulierten n 150 Sample-Werte für das Modell xt 10 wt 5 w t-1 3 w t-2 wobei w t. iid N 0,1 Die Zeitreihen-Plot der Daten folgt Wie bei den Zeitreihen Plot für die MA 1 Beispieldaten, können Sie t viel davon erzählen. Das Beispiel ACF für die simulierten Daten folgt Das Muster ist typisch für Situationen, in denen ein MA 2 Modell nützlich sein kann Es gibt zwei statistisch signifikante Spikes bei den Verzögerungen 1 und 2 gefolgt Durch nicht signifikante Werte für andere Lags Beachten Sie, dass aufgrund des Stichprobenfehlers die Stichprobe ACF nicht mit dem theoretischen Muster genau übereinstimmte. ACF für General MA q Modelle. Eigenschaft von MA q-Modelle im Allgemeinen ist, dass es keine Null-Autokorrelationen für die erste gibt Q Verzögerungen und Autokorrelationen 0 für alle Verzögerungen q. Non-Eindeutigkeit der Verbindung zwischen Werten von 1 und Rho1 in MA 1 Modell. Im MA 1 Modell gibt für jeden Wert von 1 der reziproke 1 1 den gleichen Wert für ein Beispiel , Benutze 0 5 für 1 und verwende dann 1 0 5 2 für 1 Du bekommst in beiden Fällen rho1 0 4. Um eine theoretische Einschränkung zu erfüllen, die Invertierbarkeit genannt wird, beschränken wir MA 1 - Modelle, Werte mit einem absoluten Wert kleiner als 1 zu haben Gegeben, 1 0 5 wird ein zulässiger Parameterwert sein, wohingegen 1 1 0 5 2 nicht. Unterstützung von MA Modellen ist. Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einer konvergierenden unendlichen Ordnung ist AR-Modell Durch konvergierende, wir Dass die AR-Koeffizienten auf 0 abnehmen, wenn wir uns in der Zeit zurückziehen. Unverträglichkeit ist eine Einschränkung, die in die Zeitreihen-Software programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Terminen abzuschätzen. Es ist nicht etwas, das wir in der Datenanalyse überprüfen. Weitere Informationen über die Invertierbarkeitsbeschränkung für MA 1 Modelle ist im Anhang angegeben. Advanced Theory Note Für ein MA q Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell Die notwendige Bedingung für die Invertierbarkeit ist, dass die Koeffizienten Werte haben, so dass die Gleichung 1- 1 y - - qyq 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R Code für die Beispiele In Beispiel 1 haben wir die theoretische ACF des Modells xt 10 wt 7w t-1 aufgetragen und dann n 150 Werte aus diesem Modell simuliert und Aufgetragen die Sample-Zeitreihen und die Probe ACF für die simulierten Daten Die R-Befehle, die verwendet wurden, um das theoretische ACF zu zeichnen, waren. acfma1 ARMAacf ma c 0 7, 10 Verzögerungen von ACF für MA 1 mit theta1 0 7 Verzögerungen 0 10 erzeugt eine Variable namens Lags Das von 0 bis 10 Plot-Verzögerungen reicht, acfma1, xlim c 1,10, ylab r, Typ h, Haupt-ACF für MA 1 mit theta1 0 7 abline h 0 fügt eine horizontale Achse zum Plot hinzu. Der erste Befehl bestimmt die ACF und Speichert es in einem Objekt namens acfma1 unsere Wahl des Namens. Die Plot-Befehl der 3. Befehl Plots Lags gegenüber den ACF-Werte für Lags 1 bis 10 Die ylab Parameter markiert die y-Achse und der Haupt-Parameter setzt einen Titel auf dem Plot. To sehen Die numerischen Werte des ACF verwenden einfach den Befehl acfma1. Die Simulation und Plots wurden mit den folgenden Befehlen durchgeführt. List ma c 0 7 Simuliert n 150 Werte aus MA 1 x xc 10 fügt 10 hinzu, um Mittel zu machen 10 Simulationsvorgaben bedeuten 0 Plot x, Typ b, Haupt Simuliert MA 1 Daten acf x, xlim c 1,10, Haupt-ACF für simuliert Beispieldaten In Beispiel 2 haben wir die theoretische ACF des Modells xt 10 wt 5 w t-1 3 w t-2 aufgetragen und dann n 150 Werte aus diesem Modell simuliert und die Sample-Zeitreihen und die Probe ACF für die simulierten aufgetragen Daten Die verwendeten R-Befehle waren. acfma2 ARMAacf ma c 0 5,0 3, acfma2-Verzögerungen 0 10 Plot-Verzögerungen, acfma2, xlim c 1,10, ylab r, Typ h, Haupt-ACF für MA 2 mit theta1 0 5, theta2 0 3 abline h 0 list ma c 0 5, 0 3 x xc 10 plot x, Typ b, main Simuliert MA 2 Serie acf x, xlim c 1,10, Haupt-ACF für simulierte MA 2 Daten. Appendix Nachweis der Eigenschaften von MA 1 Für interessierte Schüler sind hier Beweise für die theoretischen Eigenschaften des MA 1 Modells. Variante Text xt Text mu wt theta1 w 0 text wt text theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2w. Wenn h 1, der vorherige ausdruck 1 W 2 Für jeden h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass durch die Definition der Unabhängigkeit des wt E wkwj 0 für jedes kj weiter, weil das wt den Mittelwert 0 hat, E wjwj E wj 2 w 2.Für eine Zeitreihe. Geben Sie dieses Ergebnis, um das oben angegebene ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als ein unendliches Ordnungs-AR-Modell geschrieben werden kann, das so konvergiert, dass die AR-Koeffizienten zu 0 konvergieren, wenn wir uns unendlich zurück bewegen. Wir zeigen die Invertierbarkeit für die MA 1 Modell. Wir ersetzen dann die Beziehung 2 für w t-1 in Gleichung 1. 3 zt wt theta1 z - theta1w wt theta1z - theta 2w. Die Zeit t-2 Gleichung 2 wird. Wir ersetzen dann die Beziehung 4 für w t-2 In Gleichung 3. Zt wt theta1 z - Theta 21w wt theta1z - theta 21 z - theta1w wt theta1z - theta1 2z theta 31.Wenn wir unendlich weitergehen würden, würden wir das unendliche AR-Modell bekommen. Zt wt theta1 z - theta 21z theta 31z - theta 41z dots. Hinweis jedoch, dass wenn 1 1 die Koeffizienten, die die Verzögerungen von z multiplizieren, unendlich an Größe zunehmen werden, wenn wir uns in der Zeit zurückziehen Um dies zu verhindern, brauchen wir 1 1 Dies ist Die Bedingung für ein invertierbares MA 1 Modell. Unendliche Ordnung MA Modell. In Woche 3 sehen wir, dass ein AR 1 Modell in ein unendliches Auftrag MA Modell umgewandelt werden kann. Xt - mu wt phi1w phi 21w punkte phi k1 w punkte sum phi j1w. Diese Summierung der vergangenen weißen Rauschbegriffe ist als die kausale Darstellung eines AR 1 bekannt. Mit anderen Worten, xt ist ein spezieller Typ von MA mit unendlich vielen Terme Rückkehr in der Zeit Dies ist eine unendliche Ordnung MA oder MA Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Recall in Woche 1, stellten wir fest, dass eine Voraussetzung für eine stationäre AR 1 ist, dass 1 1 Sei s berechnen die Var xt mit der Kausaldarstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Serien, die phi1 erfordert 1 sonst die Serie divergiert.8 4 Bewegen der durchschnittlichen Modelle. Sie als vergangene Werte der Prognosevariable in einer Regression zu verwenden , Ein gleitendes Durchschnittsmodell verwendet vergangene Prognosefehler in einem regressionsähnlichen Modell. Yc et theta e theta e dots theta e. where et ist weißes Rauschen Wir verweisen darauf als MA q Modell Natürlich beobachten wir nicht die Werte von et, also ist es nicht wirklich Regression im üblichen Sinne. Notice that each Wert von yt kann als ein gewichteter gleitender Durchschnitt der letzten Prognosefehler gedacht werden. Allerdings sollten die gleitenden durchschnittlichen Modelle nicht mit der gleitenden durchschnittlichen Glättung verwechselt werden, die wir in Kapitel 6 besprochen haben. Ein gleitendes Durchschnittsmodell wird für die Prognose zukünftiger Werte beim gleitenden durchschnittlichen Glättung verwendet Wird zur Schätzung des Trendzyklus vergangener Werte verwendet. Abbildung 8 6 Zwei Beispiele für Daten aus bewegten Mittelmodellen mit unterschiedlichen Parametern Linke MA 1 mit yt 20 et 0 8e t-1 Rechts MA 2 mit ytet - e t-1 0 8e T-2 In beiden Fällen ist et normal normales Rauschen mit mittlerem Nullpunkt und Varianz eins. Abbildung 8 6 zeigt einige Daten aus einem MA 1 Modell und einem MA 2 Modell Ändern der Parameter theta1, Punkte, Thetaq führt zu unterschiedlichen Zeitreihenmustern Wie bei autoregressiven Modellen ändert die Varianz des Fehlerterms nur den Maßstab der Serie, nicht die Muster. Es ist möglich, jedes stationäre AR-Modell als MA-Inft-Modell zu schreiben. Beispielsweise können wir mit wiederholter Substitution nachweisen Dies für ein AR 1 Modell. Beginn des Phi1y et phi1 phi1y e et phi1 2y phi1 e et phi1 3y phi1 2e phi1 e et text end. Provided -1 phi1 1, wird der Wert von phi1 k kleiner, wenn k größer wird. Yt et phi1 e phi1 2 e phi1 3 e cdots. an MA infty Prozess. Das umgekehrte Ergebnis gilt, wenn wir einige Einschränkungen auf die MA-Parameter auferlegen. Dann wird das MA-Modell als invertierbar bezeichnet. Das heißt, dass wir einen invertierbaren MA q - Prozeß schreiben können Ein AR-Infty-Prozess. Unvertible Modelle sind nicht einfach, um es uns zu ermöglichen, von MA-Modellen in AR-Modelle umzuwandeln. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis einfacher zu bedienen machen. Die Invertierbarkeitsbeschränkungen sind ähnlich wie die Stationaritätsbeschränkungen. Für eine MA 1 Modell -1 theta1 1.Für ein MA 2 Modell -1 theta2 1, theta2 theta1 -1, theta1 - theta2 1.Mehr komplizierte Bedingungen gelten für q ge3 Wiederum wird R diese Einschränkungen bei der Schätzung der Modelle berücksichtigen.


No comments:

Post a Comment